Skip to contents

A S3 object of class master_matrix. See function prepare_master_matrix.

Format

A list of 6 elements:

data_matrix

data.frame with 6276 rows and 10 columns

preselected_sites

data.frame with 5 rows and 11 columns

region

object of class SpatVector

mask

NULL

raster_base

object of class SpatRaster

PCA_results

list of length 4

Examples

m_matrix_pre <- read_master(system.file("extdata/m_matrix_pre.rds",
                                        package = "biosurvey"))

print(m_matrix_pre)
#> data_matrix:
#>   Longitude Latitude Mean_temperature Max_temperature Min_temperature
#> 1 -116.4167 32.58333              146             329               9
#> 2 -116.2500 32.58333              148             333               7
#> 3 -116.0833 32.58333              155             342               9
#> 4 -115.9167 32.58333              198             387              37
#> 5 -115.7500 32.58333              215             403              46
#> 6 -115.5833 32.58333              221             412              45
#>   Annual_precipitation Prec_wettest_month Prec_driest_month       PC1
#> 1                  400                 76                 1 -2.052589
#> 2                  320                 60                 1 -2.170276
#> 3                  237                 39                 1 -2.213166
#> 4                  235                 45                 0 -1.421165
#> 5                  233                 45                 0 -1.129137
#> 6                  148                 25                 0 -1.203997
#>          PC2
#> 1 -0.4190674
#> 2 -0.2378053
#> 3  0.1379122
#> 4  1.6995256
#> 5  2.2733643
#> 6  2.6227359
#> ...
#> 
#> preselected_sites:
#>                Site  Longitude Latitude Mean_temperature Max_temperature
#> 1           Chamela -105.04479 19.50090              261             338
#> 2       Los Tuxtlas  -95.07419 18.58489              236             312
#> 3            Chajul  -90.94067 16.17000              256             337
#> 4 Parque de Tlalpan  -99.19778 19.29139              119             222
#> 5  Parque Chipinque -100.35940 25.61750              184             297
#>   Min_temperature Annual_precipitation Prec_wettest_month Prec_driest_month
#> 1             157                  833                222                 1
#> 2             163                 3084                538                62
#> 3             176                 2639                459                48
#> 4               5                 1131                232                10
#> 5              54                  474                113                 9
#>          PC1        PC2
#> 1  1.3232071  1.2137988
#> 2  6.0028213 -2.6143030
#> 3  5.2791589 -1.1364551
#> 4 -1.1445335 -3.8541911
#> 5 -0.9409087 -0.6585544
#> 
#> region:
#>  class       : SpatVector 
#>  geometry    : polygons 
#>  dimensions  : 1, 11  (geometries, attributes)
#>  extent      : -118.4042, -86.7014, 14.55055, 32.71846  (xmin, xmax, ymin, ymax)
#>  coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
#>  names       :   FIPS   ISO2   ISO3    UN   NAME   AREA   POP2005 REGION
#>  type        : <fact> <fact> <fact> <int> <fact>  <int>     <num>  <int>
#>  values      :     MX     MX    MEX   484 Mexico 190869 1.043e+08     19
#>  SUBREGION    LON   LAT
#>      <int>  <num> <num>
#>         13 -102.5 23.95
#> 
#> mask:
#> Empty
#> 
#> raster_base:
#> class       : SpatRaster 
#> dimensions  : 109, 190, 1  (nrow, ncol, nlyr)
#> resolution  : 0.1666667, 0.1666667  (x, y)
#> extent      : -118.3333, -86.66667, 14.5, 32.66667  (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (with axis order normalized for visualization) 
#> source(s)   : memory
#> name        : base 
#> min value   :    1 
#> max value   :    1 
#> 
#> PCA_results:
#> Standard deviations (1, .., p=6):
#> [1] 1.85897633 1.31688362 0.68864096 0.55601299 0.13046926 0.09810958
#> 
#> Rotation (n x k) = (6 x 6):
#>                             PC1        PC2         PC3        PC4        PC5
#> Mean_temperature     0.39994229  0.4945928 -0.12773440  0.1628971 -0.4869211
#> Max_temperature      0.09712785  0.6872795  0.35741410 -0.5278992  0.2447188
#> Min_temperature      0.46929210  0.2323324 -0.36245067  0.5051401  0.3400470
#> Annual_precipitation 0.48542331 -0.2999469 -0.02539578 -0.2601344  0.5940718
#> Prec_wettest_month   0.45736594 -0.2910001 -0.28009210 -0.5342494 -0.4526740
#> Prec_driest_month    0.40688805 -0.2332326  0.80341276  0.2941566 -0.1719113
#>                             PC6
#> Mean_temperature      0.5616765
#> Max_temperature      -0.2278232
#> Min_temperature      -0.4728823
#> Annual_precipitation  0.5031501
#> Prec_wettest_month   -0.3706043
#> Prec_driest_month    -0.1359816