Example of a master_selection object from using functions for selecting sites
Source:R/data_documentation.R
m_selection.Rd
An S3 object of class master_selection. See functions
uniformE_selection
, uniformG_selection
,
random_selection
, or EG_selection
.
Format
A list of 10 elements:
- data_matrix
data.frame with 6276 rows and 10 columns
- preselected_sites
NULL
- region
object of class SpatVector
- mask
NULL
- raster_base
object of class SpatRaster
- PCA_results
list of length 4
- selected_sites_random
list with one data.frame
- selected_sites_G
list with one data.frame
- selected_sites_E
list with one data.frame
- selected_sites_EG
NULL
Examples
m_selection <- read_master(system.file("extdata/m_selection.rds",
package = "biosurvey"))
print(m_selection)
#> data_matrix:
#> Longitude Latitude Mean_temperature Max_temperature Min_temperature
#> 1 -116.4167 32.58333 146 329 9
#> 2 -116.2500 32.58333 148 333 7
#> 3 -116.0833 32.58333 155 342 9
#> 4 -115.9167 32.58333 198 387 37
#> 5 -115.7500 32.58333 215 403 46
#> 6 -115.5833 32.58333 221 412 45
#> Annual_precipitation Prec_wettest_month Prec_driest_month PC1
#> 1 400 76 1 -2.052589
#> 2 320 60 1 -2.170276
#> 3 237 39 1 -2.213166
#> 4 235 45 0 -1.421165
#> 5 233 45 0 -1.129137
#> 6 148 25 0 -1.203997
#> PC2 Block
#> 1 -0.4190674 13
#> 2 -0.2378053 13
#> 3 0.1379122 14
#> 4 1.6995256 59
#> 5 2.2733643 82
#> 6 2.6227359 82
#> ...
#>
#> preselected_sites:
#> Empty
#>
#> region:
#> class : SpatVector
#> geometry : polygons
#> dimensions : 1, 11 (geometries, attributes)
#> extent : -118.4042, -86.7014, 14.55055, 32.71846 (xmin, xmax, ymin, ymax)
#> coord. ref. : +proj=longlat +datum=WGS84 +no_defs
#> names : FIPS ISO2 ISO3 UN NAME AREA POP2005 REGION
#> type : <fact> <fact> <fact> <int> <fact> <int> <num> <int>
#> values : MX MX MEX 484 Mexico 190869 1.043e+08 19
#> SUBREGION LON LAT
#> <int> <num> <num>
#> 13 -102.5 23.95
#>
#> mask:
#> Empty
#>
#> raster_base:
#> class : SpatRaster
#> dimensions : 109, 190, 1 (nrow, ncol, nlyr)
#> resolution : 0.1666667, 0.1666667 (x, y)
#> extent : -118.3333, -86.66667, 14.5, 32.66667 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (with axis order normalized for visualization)
#> source(s) : memory
#> name : base
#> min value : 1
#> max value : 1
#>
#> PCA_results:
#> Standard deviations (1, .., p=6):
#> [1] 1.85897633 1.31688362 0.68864096 0.55601299 0.13046926 0.09810958
#>
#> Rotation (n x k) = (6 x 6):
#> PC1 PC2 PC3 PC4 PC5
#> Mean_temperature 0.39994229 0.4945928 -0.12773440 0.1628971 -0.4869211
#> Max_temperature 0.09712785 0.6872795 0.35741410 -0.5278992 0.2447188
#> Min_temperature 0.46929210 0.2323324 -0.36245067 0.5051401 0.3400470
#> Annual_precipitation 0.48542331 -0.2999469 -0.02539578 -0.2601344 0.5940718
#> Prec_wettest_month 0.45736594 -0.2910001 -0.28009210 -0.5342494 -0.4526740
#> Prec_driest_month 0.40688805 -0.2332326 0.80341276 0.2941566 -0.1719113
#> PC6
#> Mean_temperature 0.5616765
#> Max_temperature -0.2278232
#> Min_temperature -0.4728823
#> Annual_precipitation 0.5031501
#> Prec_wettest_month -0.3706043
#> Prec_driest_month -0.1359816
#>
#> selected_sites_random:
#> First of 3 element(s).
#> Longitude Latitude Mean_temperature Max_temperature Min_temperature
#> 1017 -103.58333 29.08333 201 364 14
#> 4775 -89.41667 19.75000 258 357 157
#> 2177 -99.58333 26.58333 230 377 73
#> 5026 -100.58333 19.08333 261 389 141
#> 1533 -106.08333 27.91667 177 334 9
#> 4567 -88.58333 20.25000 259 352 161
#> Annual_precipitation Prec_wettest_month Prec_driest_month PC1
#> 1017 293 61 6 -1.35095211
#> 4775 1025 191 22 1.98425982
#> 2177 527 104 14 0.06576694
#> 5026 1060 223 3 1.59139187
#> 1533 407 110 2 -1.54090135
#> 4567 1219 208 31 2.50597999
#> PC2 Block
#> 1017 1.0168897 79
#> 4775 1.1886383 184
#> 2177 1.5150299 122
#> 5026 2.0127506 186
#> 1533 -0.0313150 56
#> 4567 0.8231932 204
#> ...
#>
#> selected_sites_G:
#> First of 1 element(s).
#> Longitude Latitude Mean_temperature Max_temperature Min_temperature
#> 1589 -108.91667 27.75000 214 370 57
#> 5382 -102.25000 18.25000 243 334 136
#> 5947 -96.08333 16.91667 162 249 76
#> 4504 -105.41667 20.25000 246 322 140
#> 595 -111.25000 30.08333 198 355 42
#> 1027 -101.75000 29.08333 207 337 46
#> Annual_precipitation Prec_wettest_month Prec_driest_month PC1
#> 1589 813 214 7 0.2466642
#> 5382 954 237 3 1.1784187
#> 5947 1299 260 22 0.5507895
#> 4504 1275 342 2 1.8846212
#> 595 345 105 3 -1.0432338
#> 1027 265 52 5 -1.1978675
#> PC2 Block
#> 1589 0.78335468 120
#> 5382 0.68406949 162
#> 5947 -2.84194551 133
#> 4504 0.07189587 182
#> 595 0.81662633 78
#> 1027 0.73779618 78
#> ...
#>
#> selected_sites_E:
#> First of 1 element(s).
#> Longitude Latitude Mean_temperature Max_temperature Min_temperature
#> 5984 -98.58333 16.75000 272 367 175
#> 5428 -94.58333 18.25000 256 336 182
#> 3255 -110.25000 23.91667 221 337 100
#> 1762 -106.58333 27.41667 154 307 -8
#> 4687 -98.25000 19.91667 126 233 16
#> 2679 -101.08333 25.41667 185 321 45
#> Annual_precipitation Prec_wettest_month Prec_driest_month PC1
#> 5984 1463 365 2 2.815478
#> 5428 2349 451 33 4.614585
#> 3255 337 105 1 -0.454541
#> 1762 508 132 7 -1.671564
#> 4687 696 123 11 -1.741988
#> 2679 376 63 7 -1.282636
#> PC2 Block
#> 5984 1.28283454 226
#> 5428 -0.71266622 285
#> 3255 1.02071265 100
#> 1762 -1.12532220 53
#> 4687 -3.00418036 49
#> 2679 0.01274243 77
#> ...
#>
#> selected_sites_EG:
#> Empty